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S U M M A R Y  
We show that if the equations governing the fluid motion in a trailing vortex is linearized as by Batchelor, more than 
o n e  solution can be constructed. Within the framework of the linear theory, there is no criterion to determine which 
solution is to be used. To clarify the situation, we formulate the Navier Stokes equations in parabolic coordinates and 
seek asymptotic solutions valid far downstream. By insisting that the interaction of the swirl with the uniform stream 
be a first order effect, we obtain the first two terms in the asymptotic expansions for the Stokes stream function and 
the angular momentum. The result thus obtained differs from that given by Batchelor in that the axial velocity defect 
decays algebraically. 

1. Introduction 

Studies of the fluid moti0n in a trailing vortex has a large literature. In 1959, Newman [7] 
considered a fairly simpleimodel in which the governing equations are linearized and decoupled. 
In 1964 Batchelor [1] considered a coupled, linearized system and obtained a solution qualita- 
tively different from that of Newman. The survey article by Hall [-5] contains extensive references 
to theoretical and experimental investigations. The original purpose of this investigation was 
to extend the linearized solution obtained by Batchelor to an asymptotic expansion for the 
non-linear system. However, it was soon realized that the linear system in cylindrical polar 
coordinates used by Batchelor admits two solutions. To clarify the situation, we formulate the 
Navier-Stokes equation in parabolic coordinates, a choice made obvious by the linear solution, 
and then obtain an asymptotic expansion far downstream. In this way, we arrive at a solution 
which resembles one of the solutions found for the linear system, and it is different from the one 
obtained by Batchelor. As usual, the higher order solutions in the expansion contain constants 
not determinable by the boundary conditions alone. Additional information on these constants 
is obtained by using integral relations derived from the momentum equations. 

In section 2 we re-examine the linear system and exhibit the two solutions. In section 3 we 
formulate the problem in parabolic coordinates, and construct an asymptotic expansion. 

2. The linear system 

Let (x, r, q~) denote cylindrical coordinates with corresponding velocity components (u, v, w). 
Let p denote the pressure and C = rw. If we consider the steady, rotationally symmetric motion 
of a viscous incompressible fluid, and assume that O/Sx ~ O/Or; v ~ u, and l u -  U[ ~ U; then 
the Navier-Stokes equations can be approximated by [1] 

U t~x p Ox -}- v \ ~ r 2  -b r Or/ (1) 

OC c~ (1 ~C~ 
U ~x = vr ~r \7 ~r/# (2) 

1 ~p C 2 
- (3) 

p Or r 3 "  
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The boundary conditions we impose on C(x, r) and u(x, r) are 

C(x,O)=O ; C(x, o o ) = F  ; u(x, o o ) = U .  (4) 

No condition is imposed on u (x, 0), but we require that it be capable of accounting for a velocity 
defect. 

In 1959, Newman [7] considered a similar system of equations, except that the term 
_ p - 1 0 p / 3 x  in (1) is absent. Thus, u and C are uncoupled. 

Equations (1), (2) and (3) were solved by Batchelor, who obtained 

c = r ( 1 - e - " )  (5) 

I Lv2 
F 2 xU Qt (7)-Q2(7) 8--~-x e-"  (6) u = U - ~ v  x o g ~ -  - , 

where 7=Ur2/4vx,  Ql(q)=e-" ,  Q2(7)=e-"{ logq+ei ( t / ) -0 .807}-2e i (27)+2e i (7) .  
In (6), L is a constant with the dimension of area and the last term accounts for any initial 

velocity defect which may be independent of the circulation. The function ei(~/) = S~ t -  t e - td t  
is tabulated. 

Since the solution to be constructed for the non-linear system is based on the linearized 
solution we would like to re-examine the asymptotic form for u. Now (2) and (3) can be solved 
to give p in terms of 7 and (1) then becomes [1] 

U ~xx - v + - = +7  (7) \Or 2 r ~rr 8vx 

where 

P(7) = ~ 
(i ~ e ~ t ~ 2 

t2 dt . 
d 

If we write (7) as 

- 8 v ~ -  + 7 = h ( t / )  

then a solution of (7) can be made up of linear combinations of solutions of L(u) = 0, plus a 
"particular" solution of L(u)= h(t/). Clearly, one solution of L(u)= 0 is u = U. If we anticipate 
u = g(x)f(7),  then substitution into L(u)= 0 readily yields two equations for g and f :  

= c0(x) (8) 
7 f "  (17) + (7 + 1)f '  (7) -  cf(tl) = 0 

where c is a numerical constant. The solutions for g and f which vanish as x-~ oo and 7 ~ o% 
and which remain finite at 7 = 0 are 

o ( x )  = x c c < 0 

and (9) 

f(7) = r  1, - t l )  

where 4)(a, c, x) is the Confluent Hypergeometric function. The asymptot ic  behavior of 
�9 ( - c ,  1, - 7 )  as 7 ~ o o  is [2, p. 278] 

�9 ( - c ,  1, - 7 )  - F ( l + c )  t/-c + 0  7 ~ o o .  

In particular, we note that r  1, - 7 )  has no zero i f 0 <  c=< 1, and the number of zeros of 
4 ) ( -c ,  1, - 7 )  equals the smallest integer equal or greater than ( - c - 1 ) .  See [2, p. 289]. 

Generalizing the above, we can seek u = gl (x)fl  (7)+ gz (x)f2 (7). Indeed, for gt = log x/x and 
g2 = x -  1, we have the equations for f l  and f2 as 
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. f ; '  + + 1)f; + k  = o (lO) 

from which we recover part of the Batchelor solution 

f ~ 1 - e ~ 
f l = - e - "  and f 2 = e - "  dr. 

o t 

One can go on to seek solutions to L(u)=0 in the form 
k 
Z g,(x)f,(.) 

i=1 

but our point to illustrate that the Batchelor solution is not the only admissible one has been 
served and we shall not pursue this further. A "particular" solution to (7) is readily constructed 
as 

if2 f" 
u = 8vx e-" e(t)e'dt (11) 

o 

and an admissible solution is therefore the sum of (11) and any solution of L(u)= 0, providing 
the sum total satisfy the imposed boundary conditions. 

Clearly then, within the framework of the linearized system, it is not possible to single out an 
appropriate solution without further information or constraints. The next question then is: 
Can the situation be rectified if we proceed to consider a non-linear system? Here, we have a 
few choices. We can consider the non-linear version corresponding to the system (1) or (3), or a 
somewhat more complicated system used by Hall. However, the solution of the linear equations 
makes it clear that the coordinate system most suitable for the flow field under investigation is 
the parabolic coordinates. It therefore seems logical to write the Navier-Stokes equations in 
parabolic coordinates, and to seek simplifications that are valid far downstream. 

3.  F o r m u l a t i o n  in p a r a b o l i c  c o o r d i n a t e s  

Let (e, fi) be general orthogonal coordinates in the meridian plane with scale factors ha, h2 ; 
and qb the azimuthal angle with scale factor h3 = r. Then with (u, v, w) denoting the velocity 
components in the directions of increasing (~, 8, ~b), the equations of motion in terms of the 
Stokes stream-function 0, the angular momentum O = h3 w ( O -  C of section 2), and the ring 

z , [3, p. 114]" circulation density l, defined by l= - D  O/h~, are 

a0. 
h 2 h 3 u -  Off, h l h 3 v = - - ~  ; 

20 O (e, h3) 0 (0, h2 l) ~ (O, h3) 
h3 0(c~,fl~ + 0(e, fl) 2h3t o(~,B) - 

and 

O(t), f~) _ vhlh2h3Die 
8) 

where 

(12) 

vh 1 h2h3 D2 (h 2 l) ; (13) 

D 2 -  h3 I ~ (  h2 ~ )  ~ ( h a  0@)1 
hlh2 hlh3 ~ + -~ h~3 

We define parabolic coordinates ((, t/) in the meridian plane by 

x = ( - t/ ; r = 2 ((t/) ~ 

where (x, r, (o) are cylindrical coordinates. The length element is given by 

ds 2 h Z d ~ i + h ~ d t l 2  ~-{-t 1 d~ 2 + ( + t ]  = -- dr] 2 . 

(14) 

(15) 
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The surface r/= k = constant is a paraboloid of focal length k ; and I/--- 0 is the axis. 
If we denote dimensional quantities by asterisks, we can non-dimensionalize the governing 

equations by using the axial velocity far upstream U, the kinematic viscosity v, a characteristic 
length a, and the angular momentum at infinity F. We define 

V V ; 4 , ,  = 2V 2 = 

U 3 Ua 
/ * = ~ 5 v 2 l ;  R = - - ; v  f 2 * = F ~ .  

The dimensionless governing equations are 

020 024, -~r/(~ +r/)l (16) 
+ r/a 2 - 

021 02/ O! 01 0(0, l) ~ 1 8~ 1 8f2 (17) 
r  r / ~ +  2 ~ + 2 8 - ~ =  8(~,r/) Tcr/  r/ 8r r 817 

and 
02Q g2K2 O(0, Q) (18) 

r/) 

The dimensionless group T=  F2/(4v 2) is the Taylor number. We are interested in solutions of the 
above system valid far downstream. The appropriate boundary conditions to be imposed are : 

as r/-~or �9 f 2 = l "  (~4, ' Or/ ~ ;  (19)  

a t r / = 0  �9 ( 2 = 4 , = 0 "  00 ' ' Or/ = ( - K a g l ( ~ ) .  (20) 

Here, 0 = ~ t/represents the uniform stream. The last condition at r/= 0 is to accommodate a 
velocity defect. The constant K1 is a parameter of the problem, and 91 (~) is to be determined. 

With the above information, we attempt to construct an asymptotic solution for ~ ~> r/, ~ ~ ,  
of the form 

0 (~, r/) ~ ~r/+ g l (~) 4'1 (r/) + 92 (0 02 (r/) + . . .  (21) 
a(r r/) ~ ao(r/) + f (r a l  (r/) + k (r a2 (r/) + ... 

The asymptotic sequences {g,(~)} and {f,(~)} are to be determined as we proceed. In this note, 
we shall obtain only gl 4,1 and fig21. Higher order terms can be determined in an iterative 
manner and so will not be presented. Obviously, we require g l (~)= o(~), f l  (~)= o(1), and 
we assume 

f/(n)(~)= o(f/(n-1)(~) ; gi(n)(~) = og~n-1)(~). 

Substitution of (21) into (16), (17) and (18) yield, to the lowest order: 

91({) (22) t -  r 4,1'(r/) 

g t (~) jr/2 4,(+) + 2r/4,(13) + r/2 0(3)+ 2r/0'~] = TOo ~2~) (23) 

 2o' + = 0  

As the equation for 01 depends on the choice of gl (r we must decide at this point how it 
should be chosen. For example, if we choose 91(r ~, or g1(r ~, 0 <  C <  1; which 
certainly satisfy g l (~)= o (~), then to the lowest order the equation would be 

r/2 4,(+) + 2r/0(~ 3) +/72 4,13) q_ 2r/0'~ = 0.  

If we choose gl(~)= 1, then the 01 equation becomes 
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t/2 0~ 4) + 2r/0(~ 3) + t/2 0 ?  ) + 21/0'~' = Tf2o f2;.  (24) 

Now the problem at hand is one in which we want to examine the interaction of swirl with the 
uniform stream. If we choose g i (~) so that the 01 equation is independent of f2 o, the interaction 
is relegated to a higher order term. Such a situation is contrary to our objective. Hence, it seems 
logical that we choose 91 (~)= 1, thereby getting (24) as the equation of 01. Once this is done, we 
can readily obtain the solutions of f2 o and 01 as 

f2 o = 1 - e  -n 

01(q) = ~ e -Xdx  e ~ P ( t ) d t - K , ( 1 - e  -") 
o 

(25) 

where P(q) is as defined in (7). Hence, by considering the equations of motion as parabolic 
coordinates, and by insisting that the interaction of the velocity components be a first order 
effect, we have resolved the difficulty encountered in the previous section. 

We now turn to the ~?-equation to determine O1. Again by substituting (21) in (18), we readily 
see that fa (~) must be chosen as ~-a and the equation governing f21 is 

t / ~ ' + ~  + ~  = 0 ,  

implying that g21 is not explicitly dependent on 0a. An appropriate solution is 

f21 (t/) = Cat /e -" .  

To determine the constant Ca, we proceed to construct the equation for 02. We obtain in a 
direct manner g2 (0 = ~- 1 and 

+ + _ + _ 2 < < ,  

-- h(r/). 

From the above equation, we can produce an integral relation by integrating with respect to t/ 
from 0 to oo; and by imposing the conditions that ~ (0)= 0 and 0[  (oo) vanishes sufficiently 
rapidly. This then yields the condition 

which gives the result 

Ca - (2 log 2) T" 

Hence, we have the following expansions for ~b and f2: 

e -  x dx e t P (t) dt + 0 0 ~ ( ~ - K a ( l - e - " )  + ~- o o 

1 K 2 (27) 

f ~ ( l - e - " ) + ~  ( 2 1 o g 2 ) T ~ ? e - " + O ( ~ )  - 

Since ~u~  O0/~q for ~ >0, all velocity components are given to O(~-2). 

4. Concluding remarks 

The solution we have obtained differs from Batchelor's solution for the linearized system in that 
there is no tog x term in the expression for the axial velocity. Hence the axial velocity defect 
decays like x -  1 instead of x -  1 log x. Also, the axial velocity defect and the perturbation in the 
angular velocity are both functions of the Taylor number T. For a given K1, the perturbational 
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angular velocity is decreased as T increases, and the axial velocity defect becomes less ap- 
preciable except right at the axis. Indeed, as T increases beyond some critical value dependent 
on K1, the axial Velocity 6'  develops an overshoot, as is evident from (27). 

Lastly, we mention that if K~ is chosen to be a negative quantity, then the solution can be 
used to describe the motion of a swirling jet in a uniform stream. This problem arises from the 
consideration of flow over engine-wing combinations. The related problem of a swirling jet 
emerging into fluid at rest had been considered by Loitsianskii [6] and G6rtler [4], and the 
solution given in terms of the similarly variable r/x. 
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